Sprawdzenie nośności podatnego żebra podporowego
Sprawdzenie nośności podatnego żebra podporowego

Sprawdzenie nośności podatnego żebra podporowego

Zgodnie z normą sprawdzenie nośności podatnego żebra podporowego należy przeprowadzić zgodnie z przedstawionym poniżej algorytmem. Zanim jednak przystąpimy do sprawdzenia nośności żebra, w pierwszej kolejności należy obliczyć charakterystyki żebra.

Wyznaczenie cech geometrycznych żebra

  • Wyznaczenie szerokości środnika współpracującej z żebrem:
\(
b_{ws}=15 \cdot ε \cdot t_w
\)

gdzie:

  • tw – szerokość (grubość) środnika,
  • ε – współczynnik klasy stali równy:
\(
ε= \sqrt{ \frac{235}{f_y}}
\)
  • Wyznaczenie powierzchni współpracjującej:
\(
A_{st}=2 \cdot b_s \cdot t_s + (30 \cdot ε \cdot t_w + t_s) \cdot t_w
\)

gdzie:

  • tw – szerokość (grubość) środnika,
  • ε – współczynnik klasy stali.
  • bs – szerokość żebra,
  • ts – grubość żebra.
  • Obliczenie momentu bezwładności żebra:
\(
I_{st}=2 \cdot ( \frac {t_s \cdot b_s^3}{12} + t_s \cdot b_s \cdot (0,5 \cdot b_s +0,5 \cdot t_w)^2) + \frac {(30 \cdot ε \cdot t_w + t_s) \cdot t_w^2}{12}
\)
  • Promień bezwładności:
\(
i_{st}=\sqrt{\frac{I_{st}}{A_{st}}}
\)

Klasa przekroju żebra

Aby określić klasę przekroju żebra należy w pierwszej kolejności wyznaczyć szerokość ścianki z następującego wzoru:

\(
c = b_s – a \sqrt{2}
\)

gdzie:

  • a – grubość spoin do połączenia żebra ze środnikiem,

Następnie wyznacza się smukłość (c/ts) porównując ją do wartości granicznej.

Stateczność żebra z uwagi na wyboczenie skrętne

Stateczność żebra ze względu na wyboczenie skrętne jest zapewniona, jeśli spełniony jest poniższy warunek:

\(
\frac {I_T}{I_p} ≥ 5,3 \cdot \frac {f_y}{E}
\)

gdzie:

  • IT – moment bezwładności przekroju żebra podczas skręcania swobodnego:
\(
I_T = \frac {1}{3} \cdot b_s \cdot t_s^3
\)
  • Ip – biegunowy moment bezwładności przekroju żebra wyznaczony względem punktu styczności żebra ze środnikiem:
\(
I_p = \frac {t_s \cdot b_s^3}{3} + \frac {b_s \cdot t_s^3}{12}
\)

Obliczenie nośności i stateczności żebra ze względu na ściskanie

Obliczenie nośności i stateczności żebra ze względu na ściskanie należy rozpocząć od wyznaczenia smukłości względnej podczas wyboczenia giętnego:

\(
\overline \lambda = \sqrt{ \frac {A \cdot f_y}{N_{cr}}} = \frac {L_{cr}} {i_{st}} \cdot \frac{1}{λ_1}
\)

gdzie:

  • Lcr – długość wyboczeniowa żebra w przypadku, gdy pasy na żebra są stężone w kierunku bocznym, równa się: Lcr = 0,75⋅hw.

Nośność żebra na wyboczenie sprawdza się z następującej zależności:

\(
1,0 > \frac{N_{Ed}} {N_{bRd}}
\)

w którym nośność żebra na ściskanie wyznacza się z następującego wzoru:

\(
N_{bRd}=\frac {\chi_z \cdot A_{st} \cdot f_y}{\gamma_{M1}}
\)

gdzie:

  • ҮM1 = 1,0.


Literatura:

[1] PN-EN 1993-1-1 Eurokod 3: Projektowanie konstrukcji stalowych – Część 1-1: Reguły ogólne i reguły dla budynków.
[2] Kozłowski A. Konstrukcje stalowe. Przykłady obliczeń wg PN-EN 1993-1, Część pierwsza wybrane elementy i połączenia. Politechnika Rzeszowska, Rzeszów 2009.


Zobacz też:

Żebra usztywniające konstrukcji stalowych

Nośność przekrojów ścinanych

Nośność przekrojów równomiernie rozciąganych

Klasy przekroju stalowego

Charakterystyki geometryczne figur płaskich

Kratownice – budowa, statyka i wyznaczalność

Ramy – budowa, statyka i wyznaczalność

konstrukcje staloweSprawdzenie nośności podatnego żebra podporowego
Udostępnij:
Sprawdzenie nośności podatnego żebra podporowego
Napisane przez
Paweł Wrochna
Co myślisz o tym artykule?
0 reakcji
love
0
like
0
so-so
0
weakly
0
0 komentarzy
Najnowsze komentarze
  • Najnowsze komentarze
  • Najlepsze komentarze
Zaloguj się, aby dodać komentarz.
Prawa zastrzeżone Pi Corp sp. z o.o. copyright 2020-2022