Statyczna wyznaczalność i geometryczna niezmienność

Statyczna wyznaczalność i geometryczna niezmienność

Statyczna wyznaczalność i geometryczna niezmienność – co oznacza, jeśli układ jest statycznie wyznaczalny i geometrycznie niezmienny? Otóż statyczna wyznaczalność konstrukcji jest wtedy, gdy da się określić wszystkie reakcje wraz z siłami przekrojowymi na podstawie ułożonych równań równowagi. Geometryczna niezmienność jest wtedy, gdy układ połączonych tarcz jest nieruchomy – brak przemieszczeń.

Podpory

Każda z podpór odpowiada ilości więzi elementarnych – ilość tych więzi odpowiada ilości reakcji dla danej podpory. W związku z tym poniżej wykonano graficzne zestawienie podpór wraz z odpowiadającymi im symbolami:

Statyczna wyznaczalność i geometryczna niezmienność dla Belki i Ramy

Warunek statycznej wyznaczalności jest to tzw. warunek ilościowy, sprawdzenie tego warunku mówi nam o tym czy analizowany układ prętowy będziemy mogli rozwiązać, czyli w praktyce wyznaczyć reakcje oraz siły przekrojowe. Jeśli ilość więzi w układzie jest zbyt mała, to układ nie jest nieruchomy, jeżeli więzi jest za dużo, w takim przypadku układ jest “przesztywniony”. W celu sprawdzenia warunku statycznej wyznaczalności należy spełnić poniższy warunek:

\[
n = r – p – 3
\]

gdzie:
n – stopień statycznej niewyznaczalności,
r – liczba reakcji podpór belki,
p – liczba przegubów w belce.

Jeżeli:

  • n = 0, to belka jest statycznie wyznaczalna,
  • n > 0, belka jest statycznie niewyznaczalna.

Aby sprawdzić geometryczną niezmienność układów płaskich należy sprawdzić poniższy warunek:

\[
e = 3t
\]

gdzie:
e – liczba więzi,
t – liczba tarcz.

Co, jeśli powyższy warunek nie jest spełniony? Niespełnienie warunku SW nie jest równoznaczne z tym, iż analizowany układ jest nieprawidłowy. W takim przypadku do rozpatrzenia mamy dwie możliwości:

  • gdy e > 3t – wniosek: konstrukcja statycznie niewyznaczalna (analizowany układ jest przesztywniony). W celu wykonania obliczeń należy stosować inne metody, takie jak: metoda sił czy metoda przemieszczeń,
  • gdy e < 3t – wniosek: analizowany układ jest geometrycznie zmienny.
Przykład I – belka
Statyczna wyznaczalność i geometryczna niezmienność
Wyznaczenie więzi i tarcz belki

Liczba tarcz:

\[
t = 1
\]

Liczba więzi:

\[
e = 3
\]

Sprawdzenie warunku:

\[
e = 3t
\] \[
3 = 3*1
\] \[
3 = 3
\]
Przykład II – rama

Ramy
Podziału ramy na tarcze i więzi.

Z powyższego rysunku wynika:

Liczba tarcz:

\[
t = 2
\]

Liczba więzi:

\[
e = 6
\]

Sprawdzenie warunku:

\[
e = 3t
\] \[
6 = 3*2
\] \[
6 = 6
\]

Kratownice

Pręty kratownic powinny tworzyć pomiędzy sobą układ niezmienny np. trójkąt (prostokąt jest układem geometrycznie zmiennym). Pod względem statycznym kratownice mogą być wewnętrznie i zewnętrznie statycznie wyznaczalne lub niewyznaczane. Zewnętrzna statyczna wyznaczalność zależy od niewiadomych oddziaływań na podporach, natomiast wewnętrzna zależy od liczby prętów w stosunku do liczby węzłów kratownicy. Warunkiem statycznej wyznaczalności kratownicy jest spełnienie równania:

\[
2w= p + r
\]

gdzie:

w – liczba węzłów kratownicy,
2w – liczba równań równowagi dla węzłów kratownicy,
p – liczba prętów kratownicy,
r – liczba reakcji podpór.

Przykład
Kratownica: numeracja prętów i węzłów

Z powyższego rysunku wynika:

Liczba węzłów kratownicy:

\[
w = 8
\]

Liczba prętów kratownicy:

\[
p = 13
\]

Liczba reakcji:

\[
r = 3
\]

Sprawdzenie warunku:

\[
2w= p + r
\] \[
2*8 = 13+3
\] \[
16 = 16
\]

W przypadku kratownic statycznie niewyznaczalnych należy określić stopień statycznej niewyznaczalności (oznaczenia jak powyżej):

\[
n= p – 2w + r
\]

Zobacz też:

Charakterystyki geometryczne figur płaskich

Kratownice – budowa, statyka i wyznaczalność

Ramy – budowa, statyka i wyznaczalność

belkageometryczna niezmiennośćkratownicapodporyramastatyczna wyznaczalność
Udostępnij:
Statyczna wyznaczalność i geometryczna niezmienność
Napisane przez
Paweł Wrochna
Prawa zastrzeżone Pi Corp sp. z o.o. copyright 2020-2022